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Overview

The fundamental aspects of the QCD vacuum that are responsible
for the dynamical generation of mass through chiral symmetry
breaking and confinement are an ongoing source of debate
Centre vortices are associated with the fundamental centre
degree of freedom of QCD, and so are a natural candidate for
investigation
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Overview

Identifying centre vortices on the lattice via MCG fixing
Overlap quark propagator on vortex-free and vortex-only
backgrounds

Qualitatively different results to previous ASQTAD results

Effects of cooling on vortex-only backgrounds
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Identifying Centre Vortices on the Lattice

Transform to Maximal Centre Gauge, where links are brought
close to centre elements

Zµ(x) = zI, z3 = 1

= exp
[2πi

3
mµ(x)

]
I, mµ(x) ∈ {−1, 0, 1} (1)

Require transformation Ω(x) maximising overlap between gauge
links and centre elements∑

x,µ

Re Tr
[
UΩ
µ (x)Z†

µ(x)
]
→ Max (2)
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Identifying Centre Vortices on the Lattice

Implemented through ’mesonic’ centre gauge fixing condition

Rmes =
∑
x,µ

|Tr UΩ
µ (x)|2 → Max (3)

Then we project onto Z3

1
3

TrUΩ
µ (x) = rµ(x) exp(iφµ(x)) (4)

Choose mµ(x) ∈ {−1, 0, 1} with 2πmµ(x)
3 closest to φµ(x)
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Simulation Details

We use the overlap operator, which has a lattice-deformed version
of chiral symmetry, leading to greater sensitivity to topological
effects
Results calculated on 50 203 × 40 gauge-field configurations using
Lus̈cher-Weisz O(a2) mean-field improved action with a lattice
spacing of 0.125 fm
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MCG-fixed phases
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Identifying Centre Vortices on the Lattice

3 sets of configurations:

Untouched configurations
Uµ(x) (5)

Vortex-only configurations

Zµ(x) = exp
[2πi

3
mµ(x)

]
I (6)

Vortex removed configurations

Rµ(x) = Z†
µ(x)UΩ

µ (x) (7)
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Centre Vortices and Confinement
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From Bowman et al, Phys. Rev. D 84, 034501 (2011)
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Previous Results Using an ASQTAD action

Performed with m0a = 0.048, a = 0.122 on a 163 × 32 lattice

From Bowman et al, Phys. Rev. D 84, 034501 (2011)
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Overlap Quark Propagator

Write momentum-space propagator as

S(p) =
Z(p)

iq/+ M(p)
, (8)

with qµ the tree-level improved kinematic lattice momentum[1]
Fixed to Landau gauge using a Fourier transform accelerated
algorithm [2] to the O(a2) improved gauge-fixing functional [3].

[1] F.D.R. Bonnet et al, Phys. Rev. D 65,2002

[2] C.T.H. Davies et al. Phys. Rev. D 37, 1581 (1988)

[3] F.D.R. Bonnet et al, Austral. J. Phys. 52, 939 (1999)
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Mass function on Untouched Configurations
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Mass function with Vortex Removed Configurations
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Renormalization function on UT Configurations
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Renormalization function with VR Configurations
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Quark Propagator on Vortex Removed Configurations

ASQTAD propagator unable to show loss of dynamical mass
generation with vortex removal
Overlap propagator shows loss of dynamical mass generation
coincident with vortex removal
Loss of confinement on vortex removed backgrounds using
overlap
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Mass function on Vortex Only Configurations
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Renormalization function on VO Configurations
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The story so far...

Vortex-only backgrounds cannot reproduce dynamical mass
generation
Vortex-only backgrounds not trivial; evidence of confinement
The question: what information about the original configurations
do vortex-only configurations retain?
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Cooling

Vortex-only configurations consist only of center elements
⇒ high action
We will perform cooling on vortex-only configurations
Cooling is performed using an O(a4)-three-loop improved action,
and the topological charge density is calculated using an
O(a4)-five-loop improved definition of the field-strength tensor.
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Untouched Configurations with Cooling
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Untouched Configurations with Cooling
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Vortex Only Configurations with Cooling
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Vortex Only Configurations with Cooling
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40 sweep comparison
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Mass function with cooling

Under a UV filter, the overlap mass function retains its form
qualitatively, with some loss of dynamical mass generation[1]

[1] D. T, W. Kamleh, D. Leinweber and D. S. Roberts, Phys. Rev. D 88, 034501 (2013) [arXiv:1306.3283 [hep-lat]].
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Renormalization function with cooling
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Mass function with cooling
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Mass function with cooling
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Renormalization function with cooling
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Mass function with cooling
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Renormalization function with cooling
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Mass function with cooling
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Renormalization function with cooling

(University of Adelaide) Wed. 25/6/2014 36 / 44



Conclusion

Shown for the first time removal of centre vortices coincident with
loss of dynamical mass generation
A centre vortex background alone does not support dynamical
mass generation, but shows evidence of confinement
Dynamical mass generation exists on vortex only configurations
after cooling
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Additional Slides
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Preconditioning Landau-gauge fixing
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MCG fixing

Wish to maximise the local quantity

Rx =
∑
µ

|Tr{G(x)Uµ(x)}|2 +
∑
µ

|Tr{Uµ(x− µ̂)G†(x)}|2 (9)

Use an SU(2) matrix g = g4I− igiσi embedded in one of the 3
SU(2) subgroups of SU(3)

Can be re-written as

Rx = giAijgj + gibi + c, (10)

with A real, symmetric 4× 4 matrix, b a real 4-vector, c a real
constant.

Method of A. Montero, Phys. Lett. B 467, 106 (1999)
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Lower Bare Masses
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Lower Bare Masses
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